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We consider the “Freud weight” Wé(x) =exp(— Q(x)). let 1<p<oo, and
let L¥(f) be a modified Lagrange interpolation polynomial to a measurable
function fe{fiesssup,.pl|f(x)] Wo(x)(1+]x])*<oco}, a>0. Then we have
lim, . [*, [1f(x)=L#(f x)| Wo(x)(1+ |x|)~*]” dx=0, where 4 is a constant
depending on p and «.  © 1998 Academic Press

1. INTRODUCTION

Let O: R — R be even and continuous on R, Q" be continuous on (0, c0),
and let Q'>0 on R. Furthermore, we assume that for some
A, B>1,

A= {(d/dx)(xQ'(x))}/Q'(x) =B,  x€(0, ).
Then we call this a Freud weight
Wo(x)=exp { — Q(x)}. (L.1)
The weight W(x)=exp { —|x|”}, f>1, is a typical example. For u>0,

the Mhaskar—-Rahmanov—Saff number «,, is defined as the positive root of
the equation

u=(2/n) jol a,tQ'(a,t)(1— )~ dt,  u>0. (1.2)
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By [6, (5.5)] we have
a,m~1/0'(a,)—0 as n— 0. (L.3)

For the weight W,(x) = Wj(x)=exp { — |x|”}, f>0, Mhaskar and Saff
[11] show that g, takes the simple form a,=u,n"’, n=1,2,3, .., where
tp is a constant depending only on f.

Let 71, denote the class of real polynomials of degree at most n. We
define orthonormal polynomials {p,(x)} ={p,(W5:x)}, p,ell,, with
respect to W72, that is,

[ pu) pa) W) d =0, =

— 00

{0, m#n,
1, m=n.

We denote the zeros of p,(x) by x,,, k=1, 2, ..., n, where

Xy <X < s <Xy

nn n—1,n

Let L,(f)ell,_, be the Lagrange interpolation polynomial to f at the
zeros {x,} of p,( WZQ; x), which is defined to be a unique polynomial such
that

Ln(f; x): i f.(xkn) lkn(x)a

k=1

where the fundamental polynomials 1, are defined by
lkn(x) = pn(x)/{(x - xkn) p;z(xkn)}ﬂ k = 19 29 ey 1.
Nevai [ 13] showed the following.
THEOREM A. Let f be a continuous function on R. Assume that f satisfies

lim f(x)(1+ |x|) exp( —x?/2)=0.

|x] - o0

Then

tim [ [f(0) = L, ()] exp( —x/2)]" dx =0

holds for every p>1.

Knopfmacher and Lubinsky [4] obtained an extension of Theorem A,
which relates to a general Freud weight, and they also investigated the
approximation of some function with finitely many singularities by certain
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modified Lagrange interpolation polynomials. Furthermore, Lubinsky and
Matjila [ 7] provided the following nice result.

THEOREM B. Let the weight W3(x) be defined by (1.1), and let
l<p<owo, 4eR, a>0, and & =min(a, 1). Then for

tim [ [0~ L, ()] Wo(x)(1+ Ix]) 17 dx =0,

n— o J_ o
to hold for every continuous function f: R — R satisfying

‘xlliinoo |FQ] Wo(x)(1 + |x])* =0, (14)

if p =<4, it is necessary and sufficient that
4> —a+(1/p);
and if p>4 and o # 1, it is necessary and sufficient that
AP G S 6= _ (1), p— o0;
and if p>4 and o= 1, it is necessary and sufficient that

al/p =G+ 5 U0 =40) —0(1/logn),  n— .

Let 1 <p < oo0. Our purpose in this paper is to approximate certain func-
tions which are not always continuous by our modified Lagrange inter-
polation polynomials. To obtain our theorem we shall apply the Lubinsky
and Matjila result for a continuous function.

We need some classes of functions on R. Let

m

Sz{s;s(l)z Y s 0), U L=[c,d),I,=[c, d,),

i=1 i=1
Cip1=d;, s, €R(I=12,.,m),1Em<oo, —w0<c<d< oo}, (L.5)
where y([;; t) is the characteristic function on /,. Then for each a>0 we
define the class E(a, W,) by

E(a, W) ={ f; for each ¢ > 0 there exists s € S such that

ess sup | f(x) —s(x)] Wo(x)(1+ |x])*<e}. (1.6)

xeR
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If fe C(R) satisfies (1.4), then fe E(a, W), and if
=Y fallix).  Lol=@ (i#)).fieR (=123 ),

i=1
and for each &> 0 there exists a(¢) >0 such that
Q)] Wo(x)(1+[x])*<e, x| =ale),
then f'e E(a, W).

Let f be integrable on any compact interval [, b]. Then we define a
modified Lagrange interpolation polynomial L¥( f; x) by

L:r(f; X) = Z fn(xkn) lkn(x)s

where ¢, =0da, /n for a certain constant J >0 small enough and

S = (1e,) [ flxg, +0) d,

o (1.7)
0 for x,,=0, _ —é&, for x;, =0,
e = &, =
e, for x,,<0, k=00 for x,,<0.

The function

et

[0 = e [ flx+ydr

n

0 for x=0, _ (e, for x=0,
. for x<0, n = 0 for x<0,

+
& =
" &

gives a mean value of f in the neighborhood (x —¢,, x) or (x, x+¢,). If f
is continuous at x, then by (1.3) we have f,(x) - f(x) as n — co. Here our
modified Lagrange interpolation polynomial L}( f; x) satisfies L*( f; x,,,) =

Ln(fn; xkn) = fn(xkn)'

Now, our theorem is the following.

THEOREM. Let 1 <p < co. Then for every function f € E(a, W) and each
number A satisfying the condition in Theorem B, we have

tim 7[00 = LECE 0] Wo)(1 4+ [x]) 417 dy =0, (18)

— 0
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2. NOTATIONS AND PRELIMINARIES

Throughout this paper ¢, ¢,, ... will denote positive constants independ-
ent of n and x, and the letter ¢ denotes a constant which may differ at each
different occurrence, even in the same chain of inequalities. Let ¢(a, b, ...)
mean a constant depending on a, b, ... . We need some lemmas.

For a constant M >0, we define a subset S;, of S'in (1.5) by

Syu={s:5€S, |s(x)| Wyo(x)(1+|x])*<M (xeR)}. 2.1)
Let fe E(a, W) be defined by (1.6). Then we see

esssup | f(x)| Wo(x)(1+ |x])*=M,< 0. (2.2)

xeR

Let 0<e<1. Then we find a step function seS,,, where M =M +1,
satisfying

esssup | f(x) —s(x)| Wo(x)(1+[x])*<e. (2.3)

xeR
We need to construct a continuous function f,, € C(R). Put
au:max{ |Cl - 1|> |dm+ 1|}’

where [¢,,d,,] is the compact support of s€S,,, and «, is Mhaskar—
Rahmanov—Saff number in (1.2). Let

0<rx<(1/4)min[a,/u, |c;—d;| (i=1,2,3,..,m)].
Now, we define the continuous function f,, € C(R) by
on[d;, d;+x] for|s(c;)|<|s(d;+x)|, or
linear on[d;—w,d;] forl|s(d;,+x)| <|s(c;),
Jeo(x) = i=1,2,3,..,m, and  (24)
onl[c¢,—x,c;], [d,,d,+x],
s(x) for otherwise,
and we set
E,={x; f(x) #5s(x), xe R}, E¥={x;x=t+ux, |lu/|<1,teE}. (2.5)
Here we suppose

Meas. E¥=3(m+ 1)k <e<1. (2.6)
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For each f,, we consider the function
Zn
¥, (x)=¥,(f.: x)=(1/e,) f AL () = fu(x+0)} d, (2.7)
Ekn

where ¢, =9da,/n, and ¢g;’, ¢, are defined in (1.7). By the simple observa-
tion we obtain the following lemma with respect to the function ¥,,.

LEMMA 2.1. Let the conditions (2.1)—(2.6) be satisfied. Then
(i) ¥.(x)=0, x¢E} (2.8)
(ii) [P, ()| = (MM g, [5) e Wo(x)(1+[x[)*} 1, xeR, (29)
where M =M +1 for M, in (2.2), and My, =sup, g Wo(x)(1+ [x])™

Proof. Let [c¢,,d,] be the compact support of s€S,,, where M=
M+ 1. By the definition of £,

¥,(x)=0,  x¢E,

that is, we have (2.8).
The definition of f,, means |f, (x+1)— f(x)| = (2M/x) |t| for xeR.
Therefore, we have

|¥,(0)] Wolx)(1 + |x[)*

+

< (1/e,) [ 1400 = fule 4 0 dt Wolx)(1+ [x])*
< (M) (1o, [ "t Wolx)(1+ [x1)*
é (M/MQx/K) En-

Consequently, we have (2.9). ||

For fe E(a, W,) and &> 0 we consider the function f,, € C(R) in (2.4).
Let ¥, be defined by (2.7), and let us take 0 <o < 1/2 and x small enough
satisfying (2.6). The inequality (2.9) means that for n=n(f,,, Q, «, J) large
enough

¥, (x)] Wolx) =e(l+[x]) (2.10)

The following two lemmas are obtained by Lubinsky and Matjila (see (2.8)
and (2.10)).
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LemMA 2.2 [7, Lemma 3.4]. Let A be defined in Theorem B. For each
1 <p< oo we have

hmsupj (5 x) Wo(x)(1+ [x]) )7 dx < ca,

where c is independent of ¢, n, and {¥,(x)}.

LemMA 2.3 [7, Lemma 3.2]. Let A be defined in Theorem B. For each
1 <p < oo we have

lim supj IL(¥,: x) Wo(x)(1 + |x])~|? dx < ce,

n— oo |x| =z oa,

where ¢ is independent of ¢, n, and {¥,(x)}.

3. PROOF OF THE THEOREM

Let f'e E(a, W), and let 0 <& < 1. Then there exists s €S such that

ess sup | f(x) —s(x)[ Wo(x)(1 + |x])* =e. (3.1)

xeR

Thus we see that there exists a(e) >0 such that

esssup | f(x)] Wox)(1+[x])*=e

|x| Z a(e)
Especially for e=1 there exists M >0 such that

esssup | f(x)| Wo(x)(1+[x])*= M, < co. (3.2)

xeR

If we put M =M, +1, then by (3.1) and (3.2) we obtain s€ S,,. Applying
Lemmas 2.2 and 2.3, we see

lim supj |L (¥, x) Wo(x)(1+ |x|)~” dx < ce. (3.3)

n— oo

By (3.1)

|7 16 =50l W1+ )~} dx

gez’jw (14 |x])~ @+ dx < ce?. (3.4)

— 0
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We can show that for each xe R
Is(x) = fo(X)| Wol(x) S2(M ;4 1) M o,(1 + [x]) %,
where M, and M, are the constants in Lemma 2.1 (by the definition of £,
we remark |f,.(x)| = |s(x)|, xe R). Hence we have

[ 150 = £l o)1+ [y} 7 d

gz(Mf+1)MQaf (14 |x])~“+=7 dx
E

Sc(M+1) Mp,e. (3.5)
By (3.4) and (3.5) we see that

e}

fyHﬂﬂ—&WHWHMU+MVﬂVﬂ§m (3.6)

Thus by (3.3), (3.6), and Theorem B we have

. 1/p
7 = L) Wt 1)) ds|

— o0

- 1/p
§|:J‘ . |{f(x)_fse()€)} WQ(x)(1+|x|)A|pdx:|

© 1/p
#7100 L i 00) Woli1 4 1)) 1 |

Ly (f= e [ 1 0 s ) W + 1)

Ekn

P 1/p
dx}

for n large enough. Since ¢ >0 is arbitrary, we have (1.8).
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