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We consider the ``Freud weight'' W 2
Q(x)=exp(&Q(x)). let 1<p<�, and

let L*n ( f ) be a modified Lagrange interpolation polynomial to a measurable
function f # [ f; ess supx # R | f (x)| WQ (x)(1+|x| ):<�], :>0. Then we have
limn � � ��

&� [ | f (x)&L*n ( f; x)| WQ (x)(1+ |x| )&2] p dx=0, where 2 is a constant
depending on p and :. � 1998 Academic Press

1. INTRODUCTION

Let Q: R � R be even and continuous on R, Q" be continuous on (0, �),
and let Q$>0 on R. Furthermore, we assume that for some
A, B>1,

AE[(d�dx)(xQ$(x))]�Q$(x)EB, x # (0, �).

Then we call this a Freud weight

W 2
Q(x)=exp [&Q(x)]. (1.1)

The weight W 2
;(x)=exp [&|x|;], ;>1, is a typical example. For u>0,

the Mhaskar�Rahmanov�Saff number au is defined as the positive root of
the equation

u=(2�?) |
1

0
autQ$(aut)(1&t2)&(1�2) dt, u>0. (1.2)
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By [6, (5.5)] we have

an �nt1�Q$(an) � 0 as n � �. (1.3)

For the weight W 2
Q(x)=W 2

;(x)=exp [&|x| ;], ;>0, Mhaskar and Saff
[11] show that an takes the simple form an=+;n1�;, n=1, 2, 3, ..., where
+; is a constant depending only on ;.

Let 6n denote the class of real polynomials of degree at most n. We
define orthonormal polynomials [ pn (x)]=[ pn (W 2

Q ; x)], pn # 6n , with
respect to W 2

Q , that is,

|
�

&�
pm (x) pn (x) W 2

Q(x) dx=$nm={0, m{n,
1, m=n.

We denote the zeros of pn (x) by xkn , k=1, 2, ..., n, where

xnn<xn&1, n< } } } <x1n .

Let Ln ( f ) # 6n&1 be the Lagrange interpolation polynomial to f at the
zeros [xkn] of pn (W 2

Q ; x), which is defined to be a unique polynomial such
that

Ln ( f; x)= :
n

k=1

f (xkn) @kn (x),

where the fundamental polynomials @kn are defined by

@kn (x)= pn (x)�[(x&xkn) p$n (xkn)], k=1, 2, ..., n.

Nevai [13] showed the following.

Theorem A. Let f be a continuous function on R. Assume that f satisfies

lim
|x| � �

f (x)(1+|x| ) exp(&x2�2)=0.

Then

lim
n � � |

�

&�
[| f (x)&Ln ( f; x)| exp(&x2�2)] p dx=0

holds for every p>1.

Knopfmacher and Lubinsky [4] obtained an extension of Theorem A,
which relates to a general Freud weight, and they also investigated the
approximation of some function with finitely many singularities by certain
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modified Lagrange interpolation polynomials. Furthermore, Lubinsky and
Matjila [7] provided the following nice result.

Theorem B. Let the weight W 2
Q(x) be defined by (1.1), and let

1<p<�, 2 # R, :>0, and :̂=min(:, 1). Then for

lim
n � � |

�

&�
[| f (x)&Ln ( f; x)| WQ(x)(1+|x| )&2] p dx=0,

to hold for every continuous function f: R � R satisfying

lim
|x| � �

| f (x)| WQ (x)(1+|x| ):=0, (1.4)

if pE4, it is necessary and sufficient that

2> &:̂+(1�p);

and if p>4 and :{1, it is necessary and sufficient that

a1�p&(:̂+2)
n >n(1�6)(1&4�p)=0(1), n � �;

and if p>4 and :=1, it is necessary and sufficient that

a1�p&(:̂+2)
n >n(1�6)(1&4�p)=0(1�log n), n � �.

Let 1<p<�. Our purpose in this paper is to approximate certain func-
tions which are not always continuous by our modified Lagrange inter-
polation polynomials. To obtain our theorem we shall apply the Lubinsky
and Matjila result for a continuous function.

We need some classes of functions on R. Let

S={s; s(t)= :
m

i=1

si/(Ii ; t), .
m

i=1

Ii=[c, d), Ii =[ci , di),

ci+1=di , si # R (i=1, 2, ..., m), 1Em<�, &�<c<d<�= , (1.5)

where /(Ii ; t) is the characteristic function on Ii . Then for each :>0 we
define the class E(:, WQ) by

E(:, WQ)=[ f; for each =>0 there exists s # S such that

ess sup
x # R

| f (x)&s(x)| WQ (x)(1+|x| ):<=]. (1.6)
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If f # C(R) satisfies (1.4), then f # E(:, WQ), and if

f (x)= :
�

i=1

fi /(Ii ; x), Ii & Ij=< (i{ j), fi # R (i=1, 2, 3, ...),

and for each =>0 there exists a(=)>0 such that

| f (x)| WQ (x)(1+|x| ):<=, |x|ea(=),

then f # E(:, WQ).
Let f be integrable on any compact interval [a, b]. Then we define a

modified Lagrange interpolation polynomial L*n ( f; x) by

L*n ( f; x)= :
n

k=1

fn (xkn) @kn (x),

where =n=$an �n for a certain constant $>0 small enough and

fn (xkn)=(1�=n) |
=+

kn

=&
kn

f (xkn+t) dt,

(1.7)

=+
kn={0

=n

for xkn e0,
for xkn<0,

=&
kn={&=n

0
for xkn e0,
for xkn<0.

The function

fn (x)=(1�=n) |
=n

+

=n
&

f (x+t) dt,

=+
n ={0

=n

for xe0,
for x<0,

=&
n ={&=n

0
for xe0,
for x<0,

gives a mean value of f in the neighborhood (x&=n , x) or (x, x+=n). If f
is continuous at x, then by (1.3) we have fn (x) � f (x) as n � �. Here our
modified Lagrange interpolation polynomial L*n ( f; x) satisfies L*n ( f; xkn)=
Ln ( fn ; xkn)= fn (xkn).

Now, our theorem is the following.

Theorem. Let 1<p<�. Then for every function f # E(:, WQ) and each
number 2 satisfying the condition in Theorem B, we have

lim
n � � |

�

&�
[| f (x)&L*n ( f; x)| WQ(x)(1+|x| )&2] p dx=0. (1.8)
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2. NOTATIONS AND PRELIMINARIES

Throughout this paper c1 , c2 , ... will denote positive constants independ-
ent of n and x, and the letter c denotes a constant which may differ at each
different occurrence, even in the same chain of inequalities. Let c(a, b, ...)
mean a constant depending on a, b, ... . We need some lemmas.

For a constant M>0, we define a subset SM of S in (1.5) by

SM=[s: s # S, |s(x)| WQ (x)(1+|x| ):EM (x # R)]. (2.1)

Let f # E(:, WQ) be defined by (1.6). Then we see

ess sup
x # R

| f (x)| WQ (x)(1+|x| ):=Mf <�. (2.2)

Let 0<=<1. Then we find a step function s # SM , where M=Mf+1,
satisfying

ess sup
x # R

| f (x)&s(x)| WQ (x)(1+|x| ):<=. (2.3)

We need to construct a continuous function fs= # C(R). Put

au=max[ |c1&1|, |dm+1|],

where [c1 , dm] is the compact support of s # SM , and au is Mhaskar�
Rahmanov�Saff number in (1.2). Let

0<}<(1�4) min[au�u, |ci&di | (i=1, 2, 3, ..., m)].

Now, we define the continuous function fs= # C(R) by

on [di , di+}] for |s(ci)|<|s(di+})|, or

linear {on [di&}, di] for |s(di+})|<|s(ci)|,

fs= (x)={ i=1, 2, 3, ..., m, and (2.4)

on [c1&}, c1], [dm , dm+}],

s(x) for otherwise,

and we set

Es=[x; fs= (x){s(x), x # R], E*s=[x; x=t+u}, |u|E1, t # Es]. (2.5)

Here we suppose

Meas. E*s =3(m+1) }<=<1. (2.6)
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For each fs= we consider the function

9n (x)=9n ( fs= ; x)=(1�=n) |
=+

kn

=&
kn

[ fs= (x)& fs= (x+t)] dt, (2.7)

where =n=$an �n, and =+
kn , =&

kn are defined in (1.7). By the simple observa-
tion we obtain the following lemma with respect to the function 9n .

Lemma 2.1. Let the conditions (2.1)�(2.6) be satisfied. Then

(i) 9n(x)=0, x � E*s , (2.8)

(ii) |9n(x)|E(MfMQ:�}) =n[WQ(x)(1+|x| ):]&1, x # R, (2.9)

where M=Mf +1 for Mf in (2.2), and MQ:=supx # R WQ(x)(1+|x| ):.

Proof. Let [c1 , dm] be the compact support of s # SM , where M=
Mf+1. By the definition of fs=

9n(x)=0, x � E*s ,

that is, we have (2.8).
The definition of fs= means | fs=(x+t)& fs=(x)|E(2Mf�}) |t| for x # R.

Therefore, we have

|9n(x)| WQ(x)(1+|x| ):

E(1�=n) |
=+

kn

=&
kn

| fs=(x)& fs=(x+t)| dt WQ(x)(1+|x| ):

E(2Mf �})(1�=n) |
=n

0
t dt WQ(x)(1+|x| ):

E(Mf MQ:�}) =n .

Consequently, we have (2.9). K

For f # E(:, WQ) and =>0 we consider the function fs= # C(R) in (2.4).
Let 9n be defined by (2.7), and let us take 0<_<1�2 and } small enough
satisfying (2.6). The inequality (2.9) means that for nen( fs= , Q, :, $) large
enough

|9n(x)| WQ(x)E=(1+|x| )&:. (2.10)

The following two lemmas are obtained by Lubinsky and Matjila (see (2.8)
and (2.10)).
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Lemma 2.2 [7, Lemma 3.4]. Let 2 be defined in Theorem B. For each
1<p<� we have

lim sup
n � �

|
_an

&_an

|Ln(9n ; x) WQ(x)(1+|x| )&2| p dxEc=,

where c is independent of =, n, and [9n(x)].

Lemma 2.3 [7, Lemma 3.2]. Let 2 be defined in Theorem B. For each
1<p<� we have

lim sup
n � �

|
|x|e_an

|Ln(9n ; x) WQ(x)(1+|x| )&2| p dxEc=,

where c is independent of =, n, and [9n(x)].

3. PROOF OF THE THEOREM

Let f # E(:, WQ), and let 0<=<1. Then there exists s # S such that

ess sup
x # R

| f (x)&s(x)| WQ(x)(1+|x| ):E=. (3.1)

Thus we see that there exists a(=)>0 such that

ess sup
|x|ea(=)

| f (x)| WQ(x)(1+|x| ):E=.

Especially for ==1 there exists Mf>0 such that

ess sup
x # R

| f (x)| WQ(x)(1+|x| ):EMf<�. (3.2)

If we put M=Mf +1, then by (3.1) and (3.2) we obtain s # SM . Applying
Lemmas 2.2 and 2.3, we see

lim sup
n � �

|
�

&�
|Ln(9n ; x) WQ(x)(1+|x| )&2| p dxEc=. (3.3)

By (3.1)

|
�

&�
[ | f (x)&s(x)| WQ(x)(1+|x| )&2] p dx

E= p |
�

&�
(1+|x| )&(2+:) p dxEc= p. (3.4)
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We can show that for each x # R

|s(x)& fs=(x)| WQ(x)E2(Mf+1) MQ:(1+|x| )&:,

where Mf and MQ: are the constants in Lemma 2.1 (by the definition of fs=

we remark | fs=(x)|E |s(x)|, x # R). Hence we have

|
�

&�
[ |s(x)& fs=(x)| WQ(x)(1+|x| )&2] p dx

E2(Mf+1) MQ: |
E*s

(1+|x| )&(2+:) p dx

Ec(Mf+1) MQ:=. (3.5)

By (3.4) and (3.5) we see that

|
�

&�
|[ f (x)& fs=(w)] WQ(x)(1+|x| )&2]| p dxEc=. (3.6)

Thus by (3.3), (3.6), and Theorem B we have

_|
�

&�
|[ f (x)&L*n ( f; x)] WQ(x)(1+|x| )&2| p dx&

1�p

E_|
�

&�
|[ f (x)& fs=(x)] WQ(x)(1+|x| )&2| p dx&

1�p

+_|
�

&�
|[ fs=(x)&Ln( fs= ; x)] WQ(x)(1+|x| )&2| p dx&

1�p

+_|
�

&� }Ln \fs=&(1�=n) |
=+

kn

=&
kn

fs=( } +t) dt; x+ WQ(x)(1+|x| )&2}
p

dx&
1�p

Ec=,

for n large enough. Since =>0 is arbitrary, we have (1.8).
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